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SUMMARY

This paper presents an aeroacoustic hybrid technique for the study of non-isothermal �ows at low Mach
number. The �ow dynamics and the acoustic production and propagation are computed separately. The
fully compressible Navier–Stokes equations are modi�ed through an expansion of the physical quantities
using a low Mach number approximation. Compressibility e�ects are thus removed in the CFD while
inhomogeneities of the �ow related to heat transfer are preserved. One advantage is a reduction of
the time step constraint. Another advantage is that the Mach number does not appear explicitly and a
simple rescaling allows a study over a relatively wide band of subsonic Mach number �ows with a
single dynamic simulation.
Compatible acoustic source terms for LEE based propagation have been de�ned and the procedure

is implemented in the case of a temporal mixing layer. Compressible simulations for Mach numbers
of 0.2, 0.3 and 0.4 are compared with the numerical results obtained using the proposed method. Very
good agreement is obtained even at relatively high subsonic Mach number demonstrating the e�ciency
of the proposed technique. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: low Mach number; source terms; aeroacoustics; linearized Euler’s equations; non-
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1. INTRODUCTION

The increased performance of computers in the last decade has led to the development
of very accurate numerical methods in the scienti�c �eld. In computational aeroacoustics, the
direct numerical simulation (DNS)—which consists in the resolution of the whole aeroacoustic
problem with the consideration of all the scales that occur in the �ow—is now accessible.
However, in the case of low Mach number �ows, DNS remains very expensive in terms

of computational time. Indeed, in this case, the time step is imposed by the sound velocity,
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whereas the pressure �uctuations associated with acoustic phenomena are typically three to
�ve orders of magnitude smaller than pressure �uctuations associated with turbulent events.
So, in this situation, a very wide range of scales have to be accurately simulated, leading to
very expensive simulations. Consequently, DNS in Computational Aero-Acoustics (CAA) can
only be used for a small number of academic problems, which nevertheless provide data of
great interest for the understanding of physical phenomena.
More e�cient methods are thus required for industrial applications. In this context, a great

deal of research has been devoted to the development of hybrid methods. The hybrid methods
consist in considering the di�erent physical phenomena separately in order to choose the most
e�cient numerical tool for each.
This type of methods was initiated by Lighthill [1, 2]. His famous analogy separates the

problems of the sound generation by the unsteady �ows from those of the sound propagation.
In this method, the local �ow �eld is used to determine the acoustic source terms that are
introduced at a second step in the propagation equation solved to obtain the acoustic far-�eld.
Lighthill’s analogy proved to be an e�cient tool and a great number of work has since been
developed to the improvement of this type of approach. In particular, Lighthill’s analogy is
not able to correctly describe the e�ects of the �ow on the propagation of acoustic waves.
A number of analogies have thus been studied to spread the domain of application of hybrid
methods.
Among these approaches is the Phillips [3] equation which allows the e�ects of a moving

media with non-uniform sound speed to be included. A more complete third-order propagation
equation was de�ned by Lilley [4], including the e�ects of refraction and convection by the
�ow. But this equation poses di�culties related to its integration, leading to a limited use.
On the other hand, the Linearized Euler’s Equations (LEE) are written as a set of partial

di�erential equations. A Green’s function is thus not required for their resolution and their use
in geometrically complex problems is more accessible than other analogies. Moreover, the LEE
are capable of a good description of the convection and refraction e�ects of a non-uniform
�ow.
A crucial point in such a method is the determination of the acoustic source terms. These

source terms are extracted from a CFD simulation which can be a large Eddy simulation (LES)
[5–7], a DNS (compressible or incompressible) or a Reynolds Averaged Navier–Stokes sim-
ulation (RANS) [8, 9]. In the case of �ow evolving at low Mach number, the incompressible
DNS is much less expensive than the compressible DNS, thanks to the absence of acous-
tic phenomena. A hybrid method composed of an incompressible DNS coupled to a LEE
simulation is thus less expensive than an aeroacoustic DNS [10]. A major disadvantage of
this technique is that the classical incompressible Navier–Stokes equations cannot be used
in the case of non-isothermal �ows [11, 12]. In such a situation, a low Mach number ap-
proximation (LMNA), which can be assimilated to a quasi-incompressible approximation,
�rst developed in the frame of low Mach number reacting �ows, can be used. Indeed, DNS
of low Mach number reacting �ows is quite di�cult on account of the presence of acous-
tic phenomena which are very much faster than chemical reactions whereas their e�ects on
the di�erent physical events are often negligible. For such computations, a set of equations
derived from the fully compressible Navier–Stokes equations has been developed so that in-
homogeneities of the �ow (in term of density �uctuations) related to heat transfer are well
described, whereas compressibility e�ects (like the presence of acoustic waves) are removed
[11–13].
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Several acoustic=�ow decomposition based on di�erent physical or numerical analysis of
the problem [14–16] can be found in the literature.
The hybrid method presented in this study is constituted of a quasi-incompressible DNS

(called LMNA in this paper) and the LEE. This paper can be considered as a validation
step of the formulation of the acoustic source terms determined by a LMNA in the case of
non-isothermal �ows.
The second part of the paper is dedicated to the presentation of the low Mach number

approximation. In the third section, developments and suitable assumptions which lead to
the acoustic equations and source terms are presented. The fourth part describes the �ow
con�guration chosen as a test case, and the numerical methodologies used in the di�erent
codes. Isothermal and non-isothermal simulations are computed and compared to compressible
DNS results as references. Conclusions are �nally presented concerning the validity, e�ciency
and the advantages of the present approach.

2. THE LOW MACH NUMBER APPROXIMATION

This part is dedicated to the description of the equations used in the CFD code.
Throughout the paper, all dimensional variables are denoted by the superscript *.
The equations of the low Mach number approximation (LMNA) used in this work are

deduced [11, 12] from the compressible Navier–Stokes equations for a perfect-gas which are
written in conservative non-dimensional form

@�
@t
+
@�uj
@xj

=0 (1)

@�ui
@t

+
@�uiuj
@xj

=−@p
@xi

+
1
Re
@�ij
@xj

(2)

@E
@t
+
@(p+ E)uj

@xj
=
1
Re
@ui�ij
@xj

+
1

M 2Re Pr(�− 1)
@2T
@x2j

(3)

p=
�T
�M 2 (4)

in Cartesian co-ordinates xi=(x; y; z), where ui=(u; v; w) are the velocity components,
(p; �; T ) are respectively the pressure, the density and the temperature �elds. E is the to-
tal energy per unit volume and �ij is the viscous stress tensor, given respectively by
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All variables have been non-dimensionalised using L∗ref , U
∗
ref , �

∗
ref , T

∗
ref , and t

∗
ref =L

∗
ref =U

∗
ref as

references length, velocity, density, temperature and time. �= c∗p =c
∗
v is the ratio of speci�c

heats and the universal gas constant is r∗ = c∗p − c∗v . The three fundamental non-dimensional
parameters are the Reynolds number Re=�∗refU

∗
refL

∗
ref =�

∗, the Prandtl number Pr=�∗c∗p =k
∗,

and the Mach number M =U ∗
ref =

√
�r∗T ∗

ref .
The low Mach number approximation [11, 12], is obtained from (1)–(4) by expanding

all the variables of the �ow in power series in �= �M 2. These expansions are expressed as
follows

�= �(0) + ��(1) + · · · (7)

ui = u
(0)
i + �u(1)i + · · · (8)

T = T (0) + �T (1) + · · · (9)

while the equation of state (4) imposes an expansion for p such that

p=
p(0)

�
+ p(1) + · · · (10)

In Equation (10), p(0) and p(1) can be interpreted, as it is done in References [11, 12],
respectively as a thermodynamic pressure and a �uid dynamic pressure.
By substituting (7)–(10) into Equations (1)–(4), the lowest order in � leads to
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According to (12), the thermodynamic pressure p(0) is spatially uniform. Since an open phys-
ical domain is considered here, p(0) is also assumed to be constant in time.
In order to close the system, an additional equation is required, so equation (2) is considered

for the zeroth-order in �:
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Finally the governing dynamical equations are (11), (13), (14) and (15). Details of the nu-
merical resolution of these equations can be found in References [11, 12]. It is important to
emphasize that these equations are only valid for a vanishing Mach number, but there is
no restriction where the spatiotemporal density variations are concerned. In fact, the Mach
number does not appear in a CFD simulation based on LMNA, but an appropriate rescaling
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of the results of such a simulation allows predictions corresponding to �ows evolving at dif-
ferent Mach numbers. Obviously, the restriction of this last point is the validity limit of any
incompressible assumption.

3. FROM LMNA TO ACOUSTICS

Starting from the CFD model for non-isothermal low Mach number �ows, a new step consists
now in restoring acoustic motion, in order to lead to an e�ective hybrid method. The process
consists in deriving the acoustics from the decomposition used to get the �ow dynamics using
appropriate assumptions, and bringing to the fore the propagation equations with suitable
source terms.
In the LMNA decomposition presented in the previous part, the fully compressible Navier–

Stokes equations have been decomposed at the lowest order in �. Now, since we are interested
in acoustic variables, we will focus our attention on the upper order of the compressible
equations

@�(1)

@t
+
@
@xj

(�(0)u(1)j + �(1)u(0)j )=0 (16)

@�(0)u(1)i
@t

+ �(1)
@u(0)i
@t

+ (�(0)u(1)j + �(1)u(0)j )
@u(0)i
@xj

+
@�(0)u(0)j u

(1)
i

@xj
=
1
Re
@�(1)ij
@xj

(17)

@p(1)

@t
+
@
@xj

(p(1)u(0)j + �p(0)u(1)j ) + (�− 1)p(1)
@u(0)j
@xj

=
�− 1
Re

�(0)kj
@u(0)k
@xj

+
�

Re Pr
@2T (1)

@x2j
(18)

In the frame of acoustic waves traveling along a short distance, the propagation features are
hardly a�ected by viscous e�ects. Moreover, Lighthill [1, 2] showed that for free subsonic
�ows at su�ciently high Reynolds number, viscous noise can be neglected with respect to
shear noise. Then, the viscous terms of (16)–(18)—(1=Re)@�(1)ij =@xj in (17), and
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in (18)—can be neglected, and the following system is obtained:
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At this stage, one almost recognizes the linearized Euler’s equations. Nevertheless, there are
still three di�erences with the LEE generally used. The �rst is the presence of �(1)(@u(0)i =@t)
in (19). In the literature, the LEE are often solved by considering the propagation over a
steady mean �ow. In that case, this term can be dropped. The treatment of the mean �ow
will be discussed in detail in Section 4.3. Secondly, contrary to (20), the equation of the
LEE concerning the energy conservation contains the term −(� − 1)u(1)j @p(0)=@xj. However,
Equation (12) shows that @p(0)=@xi is zero for all i. A third di�erence between (18)–(20) and
the LEE is the lack of pressure gradient @p(1)=@xi in (19). Then, modifying (19) by adding
@p(1)=@xi in the LHS and the RHS gives
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This last trick of arithmetic allows the left hand side of Equations (18)–(21) to be identi-
�ed as the classical LEE for a small perturbation (p(1); u(1)i ; �

(1)) over a steady mean �ow
(p(0); u(0)i ; �

(0)). Now, Equation (21) di�ers from LEE momentum equation by a forcing term
in the RHS, which de�nes the �ow generated noise.
At this stage, the meaning of p(1) in the LHS and the RHS must be discussed. Indeed,

the LEE are likely to support acoustic, vorticity and entropy wave modes. The presence of
each of these modes in the computed solution depends only on the nature of the forcing term
employed. So p(1) in the LHS can contain both acoustic and vorticity �uctuations (and so
must results on solving LEE). On the other hand, the forcing term must be provided and
evaluated by the solution of the CFD simulation (in which the acoustics are absent). So
p(1) (RHS) will involve only aerodynamic �uctuations. The LMNA leads to this term being
expressed using Equation (15), in which viscous e�ects are neglected [1, 2].
As the vorticity mode is convected by the �ow, it stays con�ned to the CFD zone. In that

region, acoustical and �uid dynamic �uctuations cannot be separated. The acoustic mode will
propagate beyond and a more extended computational grid can be employed for the solution
of LEE so as to extract the acoustics.
Finally, the acoustic production and propagation can be obtained by solving the following

equations:
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where Si stands for the acoustic source term
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This source term is consistent with the one de�ned in References [5, 14]. Indeed, the diver-
gence of

@�(0)u(0)i
@t

(27)

is equal to zero in the isothermal case, so it does not excite the acoustic mode. In isothermal
case, (25) thus reduces to

@�(0)u(0)i u
(0)
j

@xj
(28)

which corresponds to the velocity �uctuations in the �ow. This term, which is the same as
that de�ned in References [5, 7] contains the shear noise and the self noise and is su�cient
for isothermal �ows.
In the non-isothermal case, (27) is not divergence-free, so it acts as an additional acoustic

source. The entire form (25) of Si is then required. The term (26) involves temporal �uctua-
tions of momentum in the �ow, in the case where the density distribution is not homogeneous.
The density inhomogeneities create di�erent accelerations between neighbouring particles in
the turbulent zone [17]. Equation (15), in which viscous e�ects are neglected, can be rewritten
as
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Compared to the isothermal case in which
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the pressure �uctuations of the non-isothermal case are governed by the same acceleration
�uctuations Du(0)i =Dt supplemented by �uctuations due to density inhomogeneities

u(0)i
�(0)

D�(0)

Dt

4. TEST CASES: ISOTHERMAL AND NON-ISOTHERMAL
TEMPORAL MIXING LAYER

4.1. Flow con�guration

The temporally evolving mixing layer has been chosen to validate the modeling of the acoustic
source terms. This test-case has been used in several numerical works in �uid dynamics
[18–20], and in aeroacoustics [21, 22].

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:441–461



448 F. GOLANSKI ET AL.

|

|

direction
of the flow

direction
of the flow

U1
*

U2
*

δ

ρ

ρ

ω*

2
*

2T *

Lx
*

yL *

T1
*

1
*

y*

x*O

|

|

Figure 1. The temporal mixing layer �ow con�guration.

This �ow is studied in a rectangular numerical domain (L∗x ×L∗y) between two streams of
di�erent velocities, temperatures and densities, respectively denoted (U ∗

1 ; T
∗
1 ; �

∗
1) in the upper

half domain and (U ∗
2 ; T

∗
2 ; �

∗
2) in the lower half. The notation is shown in Figure 1.

In this application, the references are L∗ref = �
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! (where �
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! is the initial vorticity thickness),
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2 and �∗ref =�

∗
2 . The Reynolds and Prandtl numbers are taken as

Re=400 and Pr=0:75. It has been shown in Reference [21] that viscosity e�ects in the
acoustic sources are negligible in the present con�guration even at this moderate Reynolds
number. The initial pressure p∗ is assumed to be uniform. The initial mean velocity �eld is
given by the following hyperbolic-tangent pro�le
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The initial temperature �eld is deduced using the Crocco–Buseman relation
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where the 〈:〉 operator is the mean value over the periodic direction:

〈�〉(y; t)= 1
Lx

∫ Lx

0
�(x; y; t) dx (33)

The �ow is perturbed using an incompressible disturbance �eld (ũ∗; ṽ∗) composed of a fun-
damental and two sub-harmonic disturbances.
The choice of this somewhat speci�c �ow has been motivated by several arguments. First,

it is worth keeping in mind that the present work is a validation step in the domain of
hybrid approaches in CAA. In this context, the temporal mixing layer, although being an
academic con�guration, exhibits a lot of advantages. Firstly, the mixing layer is a fundamen-
tal �ow greatly studied in the literature. Secondly, the temporal �ow has physical proper-
ties which allow numerical di�culties like the evacuation of acoustic and vorticity modes
at the out�ow and in�ow boundaries to be avoided. Lastly, the numerical domain can be
smaller than that used in a spatial con�guration: such a validation is thus less expensive in
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computational time and memory requirements. Other temporal �ows has been studied in CAA
as in Reference [23].
In a �rst step, an isothermal test, for which the acoustical source terms are now well known

[5, 7, 14], is computed to con�rm that the temporal mixing layer can be used as a benchmark
in the validation of a CAA code. The results provided by the hybrid method are compared
to compressible DNS simulations. By de�nition, the DNS of the compressible Navier–Stokes
equations consists in the solving of the CAA problem without any supplementary modeling.
So, the compressible DNS results are considered in this work as reference. Moreover, the initial
conditions used in the LMNA simulation correspond exactly to those used in the compressible
one, allowing direct comparisons of the di�erent simulations.
The non-isothermal con�guration is simulated in a second step to validate the LMNA=LEE

procedure using the acoustic source terms de�ned by Equation (25).

4.2. Numerical implementation

The �ow and acoustic computations are performed on Cartesian grids. However, for informa-
tion, the LMNA solver uses the sixth-order compact �nite di�erence scheme of Reference [24]
to compute spatial derivatives, and a third-order Runge–Kutta scheme for time integration.
The �ow is assumed to be periodic in the streamwise direction, while a free-slip boundary
condition is used for y∗= ± L∗y=2.
For the LEE code, the same spatial derivative scheme, and a fourth-order Runge–Kutta

scheme are employed. Di�erent schemes are used in the CFD and acoustic parts because the
numerical resolution of the LMNA requires, as in an incompressible simulation, the inversion
of a Poisson equation for the pressure. The Poisson equation contains, unlike the incom-
pressible model, a term which must be interpolated. This interpolation can modify the global
temporal integration order. The use of a temporal interpolation on the subtime steps of a
RK4 scheme, even with a high order interpolation scheme, has been found to be less e�cient
than with a RK3 scheme. The global scheme (Runge–Kutta and interpolation) thus obtained
is second order with the third-order Runge–Kutta scheme whereas only �rst order has been
obtained with the fourth-order Runge–Kutta scheme. The resolution of the dynamic problem
is not within the scope of this paper, so the numerical methodology employed in the dynamic
part will not be discussed in detail. More information can be found in Reference [25] and in
a paper under review.
The temporal approximation of the source term (26) is performed by the third-order explicit

approximation (
@f
@t

)
n
=
1
�t

[
11
6
fn − 3fn−1 + 32 fn−2 −

1
3
fn−3

]
(34)

The boundary condition in the streamwise direction is also periodic while a non-re�ecting
boundary condition (NRBC) must be employed in the other direction. An interesting property
of the temporal mixing layer [22] is that acoustic waves propagate mainly in the y-direction
in the acoustic far-�eld. This property has already been used to simplify the resolution of the
Lighthill’s analogy in References [21, 23]. A one-dimensional NRBC can then be employed.
Here the one-dimensional characteristic based boundary condition proposed in Reference [26]
is used. This condition proved its e�ciency in this con�guration for the compressible DNS
simulation taken as Reference [21].
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Figure 2. Representation of the di�erent computational grids.

The main advantage of an hybrid method is the reduction of the computational cost. But,
to obtain this advantage, the grid resolution of the LEE code must be coarser than that of
the dynamic simulation. The time step must also be larger. So an interpolation step must be
performed to �t the data of the dynamic simulation to the LEE spatial and temporal grids.
For the present simulations, only one out of two points of the LMNA grid are kept for the
LEE grid and a cubic spline interpolation is performed to �t the time evolutions. The cubic
spline interpolation, by its non-locality, provides a good smoothness for the function obtained,
and ensures the continuity of its �rst two derivatives. Moreover, and it is a decisive property
in CAA, this interpolation method generates very few spurious waves [27].
Moreover, the acoustic far-�eld must be computed in a region where there are no aero-

dynamic sources. The physical domain of the LEE simulation is thus chosen larger than the
LMNA simulation. In order to make comparisons of the results, the compressible simulation
is extended to the whole LEE physical domain. Figure 2 schematically shows the charac-
teristics of the di�erent grids. The spatial decimation of the data provided by the LMNA
code introduces some spurious waves in the LEE computation. As these waves are not cor-
rectly evacuated by the boundary conditions, a spatial �ltering (the six-order compact �lter
of Reference [24]) is applied.

4.3. Mean �ow

In other studies using the LEE [5, 7], the mean �ow of the acoustic simulation is deduced from
LES data by taking the mean value of the dynamic quantities over a period corresponding
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Plate 1. Isothermal case. Instantaneous �elds at: (a) t=53.6, (b) t = 14:6 for M =0:2.
Top: Instantaneous acoustic density �elds in the acoustic region. Bottom: Instantaneous

vorticity �elds in the source region. Compressible simulation is at the left.

Plate 2. Non-isothermal case. Instantaneous �elds at: (a) t = 75:6, (b) t = 155:6 for M =0:2.
Top: Instantaneous acoustic density �elds in the acoustic region. Bottom: Instantaneous

vorticity �elds in the source region. Compressible simulation is at the left.
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Plate 3. Non-isothermal case. Instantaneous �elds at: (a) t = 75:9, (b) t = 155:4 for M =0:3.
Top: Instantaneous acoustic density �elds in the acoustic region. Bottom: Instantaneous

vorticity �elds in the source region. Compressible simulation is at the left.

Plate 4. Non-isothermal case. Instantaneous �elds at: (a) t = 76:2, (b) t = 157:2 for M =0:4. Top:
Instantaneous acoustic density �elds in the acoustic region. Bottom: Instantaneous vorticity �elds in the

source region (see Figure 3). Compressible simulation is at the left.
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to several pairings. In our case, the major di�erence with these studies is that the temporal
model does not allow such an operation. Indeed, the temporal con�guration can be assimilated
to an approximation of the spatial model where the �ow is observed in a moving window
which follows the large eddies of the �ow. According to References [28, 29], the speed of
these eddies can be estimated by Uc = (c1U2+c2U1)=(c1+c2) (where c1 and c2 are the speeds
of sound in the regions of densities �1 and �2). Then, the frame associated with the temporal
description translates at a uniform speed in the streamwise direction with respect to the frame
associated with the spatial model. Finally, by this translation, the ensemble-average of any
�ow quantity can be expressed by means of an average operator over the streamwise direction
at each instant of the temporal evolution of the �ow. In this way, the dynamic quantity is
averaged over a smaller number of pairings than in References [5, 7], which is balanced by
the deterministic nature of this test case. To resume the mean �ow treatment, the LEE are
considered for the perturbation (�(1); p(1); u(1)i ) over the mean �ow (�0; p0; u0i), with

�0(y; t) = 〈�(0)〉(y; t)
p0(y; t) = 〈p(0)〉(y; t)
u0i(y; t) = 〈u(0)i 〉(y; t)

4.4. Parameters

As the isothermal and non-isothermal tests have some common features, their computational
parameters will be described in the same part of the paper. The geometries of the physical
and computational domains are shown in Figure 2.
The centre of the mixing layer is chosen to be located at y∗=0. In order to reduce

the computational time of the compressible DNS and LEE simulations, while keeping a
propagation zone as large as possible in the y-direction, the physical domain is not centred
on the mixing layer. The physical domain extends from y∗=−30�∗! to y∗=120�∗! in these
simulations. The incompressible and LMNA simulations do not need to have a physical do-
main as large as the compressible DNS and the LEE. Their domain can be limited to the
source region only. Then the physical domain extends from y∗=−30�∗! to y∗=30�∗! in the
incompressible and LMNA simulations. In the streamwise direction, the situation is more
simple: all physical domains are identical. So for each simulation the domain extends from
x∗=0 to x∗=30:7�∗! in the streamwise direction.
In the compressible and LMNA simulations, the grid resolution is imposed by the small

scales of the �ow. They have exactly the same spatial resolution in the two directions. The
number of grid points are 256× 501 for the incompressible and LMNA simulations, whereas
there are 256× 1251 points for the compressible simulation.
The grid resolution of the LEE simulation is chosen to be half that of the DNS. Actually,

only every second point of the CFD grid is kept for the acoustic resolution. The use of CFD
data in the LEE code need not therefore introduce spatial interpolations. There are 128× 626
grid points for the LEE resolution.
The isothermal case corresponds to the ratio T ∗

1 =T
∗
2 = 1, and the non-isothermal one corre-

sponds to T ∗
1 =T

∗
2 = 2.
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5. RESULTS AND DISCUSSION

5.1. Isothermal case

The temporal con�guration of a mixing layer in the isothermal case is treated in this �rst
application in order to con�rm that it is a good choice for validation of a hybrid method.
In this case, the LMNA equations are equivalent to the conventional incompressible Navier–
Stokes equations, and as discussed in Section 3, the source term (25) is consistent, in the
isothermal case, with that de�ned in Reference [5], which is �nally used in this part.
The scheme in Figure 3 shows that the studied domain is divided in two separated zones.

The region of space located at the bottom (for −Ly=26y6Ly=2) is considered as a sound
production zone. This region corresponds exactly to the computational domain of the LMNA.
It is the region where the acoustic sources are de�ned. The zone situated at the top (for
Ly=26y6L′y) is called the acoustic propagation zone. In this region, the acoustic sources are
supposed to be negligible. In fact, they are taken to be zero in the case of the hybrid method
(the sources being computed in the LMNA domain presented in Figure 2). To qualify the
hybrid method results, the density �elds are compared to the compressible DNS results in the
acoustic zone.
The common parameters of the isothermal test are those de�ned in the previous part. The

Mach number is M =0:2 (M being de�ned by M =U ∗
ref =

√
�r∗T ∗

ref where U
∗
ref =U

∗
1 −U ∗

2 and
T ∗
ref =T

∗
2 ). The non-dimensional time scale presented in the following results is related to

the non-dimensional time used in the compressible simulations (t∗ref = �
∗
!=
√
�r∗T ∗

ref ), which
requires a rescaling of the LMNA results (based on t∗ref = �

∗
!=U

∗
ref ). The non-dimensional time

steps are dtcomp =0:0125, dtLEE =4× dtcomp and dtLMNA =10× dtcomp.
Plate 1 shows the results provided by the hybrid method and by the compressible DNS for

two di�erent instants of the evolution.

Figure 3. Localisation of the acoustic and the source regions.
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Figure 4. Isothermal case. Time history of the acoustic density for M =0:2 at the point A (x=15:35,
y=101:76). — Compressible DNS; - - - Hybrid method.

Very good agreement can be seen in the vorticity, and density �elds at the beginning
of the solution (t=53:6, Plate 1(a)). Qualitatively, the vorticity �eld seems to follow the
same dynamic in the two approaches in Plate 1(b), but visibly, some temporal shift ex-
ists when looking at the density �elds in the propagation zone after a long calculation
time. To look more precisely at what is happening, Figure 4 shows the evolution of the
acoustic density at a given point A (see Figure 3) of co-ordinates (x=15:35; y=101:76)
with respect to the retarded time. The use of the retarded time allows a direct compari-
son between the events that occur in the mixing layer and the acoustic consequences at
the point A. The agreement between the two curves is good. Nevertheless, we can observe
a temporal gap for tr greater than about 100. This gap is also well visible in Figure 5
when looking at the evolution of the mean acoustic density over the streamwise direction at
y=101:76.
In fact, the di�erence is produced by the delay of the LMNA simulation with regard to

the compressible simulation. This delay appears clearly in Figure 6 for the time evolution
of the vorticity (!= @v=@x − @u=@y) in the middle of the mixing layer (at the co-ordinates
x=15:35; y=0). This �gure shows also a temporal gap between the dynamic evolutions of
the compressible and the LMNA computations for t greater than about 120. The source terms
being computed using the data of the LMNA, it is obvious that a temporal gap between the
dynamic features induces the same temporal gap in the acoustic results. This temporal advance
of the incompressible simulation with regard to the compressible one can be explained by the
stabilizing e�ects of the compressibility.
To conclude the discussion about these �rst results, it appears that the temporal con�gu-

ration is able to provide an appropriate test case in a validation step of aeroacoustic hybrid
approach.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:441–461



454 F. GOLANSKI ET AL.

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0 20 40 60 80 100 120 140 160 180 200

〈�
〉

t − td

Figure 5. Isothermal case. Time history of the mean acoustic density over the streamwise direction for
M =0:2 at y=101:76. — Compressible DNS; - - - Hybrid method.
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Figure 6. Isothermal case. Time history of the vorticity for M =0:2 in the middle of the mixing layer
(x=15:35, y=0). — Compressible DNS; - - - LMNA solution.

5.2. Non-isothermal case

The temporal con�guration of a non-isothermal mixing layer is now studied. The initial tem-
perature �eld is now de�ned by the Crocco-Buseman relation where T1 = 2T2 (Section 4.1).
The complete acoustic source expression obtained from Equation (26) is employed in the
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Figure 7. Non-isothermal case. Time history of the acoustic density for M =0:2 at the point A (x=15:35,
y=101:76). — Compressible DNS; - - - Hybrid method.

hybrid code. A �rst simulation is computed with M =0:2 to validate the source term’s formu-
lation. Results are presented in Plate 2 and Figure 7. Comparisons of the compressible DNS
and the hybrid method show as good an agreement as in the isothermal test. The acoustic
source de�nition is well compatible with the LMNA simulation and restores adequately the
waves emitted by a non-isothermal mixing layer. As suggested in the presentation of the
LMNA equations, the Mach number does not appear in this set of equations. In fact, the low
Mach number approximation used here can be considered an incompressible system in which
the e�ects of temperature variations on the dynamic evolution are retained. Then, when the
following denomination ‘LMNA simulation at M =0:2’ is used, the exact denomination should
be ‘LMNA simulation corresponding to a M = 0:2 compressible simulation’. An interesting
consequence of this point is that a single LMNA simulation can provide results comparable
to compressible simulations at di�erent Mach numbers with the aid of a simple rescaling
of the velocity �elds and the temporal reference. The limit of this point is the limit of the
incompressible assumption, and the agreement between the two methods will decrease with
increase of the Mach number.
Two other acoustic simulations are performed with M =0:3 and 0.4 in order to explore the

limit of the present hybrid method in terms of Mach number range. The time steps of the di�er-
ent simulations can be found in Table I. Only one LMNA simulation of the �ow has been com-
puted: the given time steps in this case are just used for renormalisation of the �ow dynamic
corresponding to di�erent Mach numbers. The choice of di�erent LEE simulation time steps
has been motivated so as to obtain coincident instants in compressible and hybrid solutions for
best comparison. The other parameters are unchanged with regard to the previous simulations.
Acoustic and dynamic �elds are shown in Plates 3 and 4, respectively, for M =0:3 and 0.4
and the time history of the acoustic density is given for a chosen point in Figures 8 and 9.
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Table I. Time steps of the non-isothermal simulations.

M dtcomp: dtLMNA dtLEE

0.2 0.0125 0.125 0.05
0.3 0.01875 0.1875 0.0625
0.4 0.025 0.25 0.0625
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Figure 8. Non-isothermal case. Time history of the acoustic density for M =0:3 at the point A
(x=15:35, y=101:76). — Compressible DNS; - - - Hybrid method.

These results show good agreement with the compressible results. Nevertheless, the expected
behavior with the increasing Mach number seems veri�ed: the temporal gap increases with
the Mach number. This gap is clearly identi�ed in Figures 10, 11 and 12 where it appears for
tr greater than about 120 at M =0:2 (which is comparable to the isothermal case), whereas
it appears earlier as M increases (tr¿60 for M =0:3 and tr¿40 for M =0:4).
However, it is worth noting that the amplitudes stay very close to those given by the

compressible simulation, even at M =0:4.
Lastly, Figure 13 shows the mean absolute error between the hybrid method and the com-

pressible DNS for the non-isothermal simulations. The error is de�ned by the relation

��(t − td) = 1
S

∫ ∫
S
|�LEE − (�comp:− �1)| dS (35)

where S is the area of the acoustic region, and td is the time needed for an acoustic wave to
leave the domain.
This �gure con�rms that the quality of the hybrid approach based on the LMNA decreases

whereas the Mach number increases. Moreover, the error increases strongly (it is particularly
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Figure 9. Non-isothermal case. Time history of the acoustic density for M =0:4 at the point A
(x=15:35, y=101:76). — Compressible DNS; - - - Hybrid method.
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Figure 10. Non-isothermal case. Time history of the mean acoustic density over x at y=101:76 for
M =0:2. — Compressible DNS; - - - Hybrid method.

visible on the M =0:2 simulation) when the temporal gap becomes visible. Indeed, the error
de�ned by (35) then compares �elds which should appear at staggered instants, automatically
inducing an increase of the error. However, in the three cases, the error hardly reaches 10%
of the maximum value of the acoustic density along the whole simulation.
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Figure 11. Non-isothermal case. Time history of the mean acoustic density over x at y=101:76 for
M =0:3. — Compressible DNS; - - - Hybrid method.
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Figure 12. Non-isothermal case. Time history of the mean acoustic density over x at y=101:76 for
M =0:4. — Compressible DNS; - - - Hybrid method.

To complete this discussion, it is interesting to compare the simulation times of each
method. The three compressible simulations‡ required 120 h of calculation for the M =0:2

‡On a Xeon PIII processor, 700 MHz CPU clock, 1 Mo L2 cache.
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Figure 13. Non-isothermal case. Time history of the mean error on acoustic density for simulations
corresponding to the three di�erent Mach numbers. — M =0:2; - - - M =0:3; · · · M =0:4.

case, 80 h for M =0:3 and 60 h for M =0:4. On the other hand, the LMNA computation
(see footnote ‡) was about 14 h long, and the LEE simulation§ times were about 7, 4.5 and
3:5 h for M equal to 0.2, 0.3 and 0.4, respectively. The hybrid method does not then provide
a decisive advantage when the �ow reaches Mach numbers greater than 0.4. This however is
not a major drawback since hybrid methods are mainly attractive for small Mach numbers.
On the contrary, the proposed hybrid technique produces an undeniable gain when computing
�ows evolving at very low Mach number, and particularly when a parametric study based
on the Mach number is considered. Indeed, the cost of the whole non-isothermal case of
the present study is approximately 270 h in the compressible simulation, whereas the hybrid
method required 29 h only (the LMNA simulation being computed only once for the whole
study).

6. CONCLUSION

This paper presents a hybrid aeroacoustic approach for non-isothermal �ows composed of
a low Mach number approximate (LMNA) �uid dynamic simulation and a linearized Euler
equation (LEE) based propagation code.
The LMNA eliminates compressibility e�ects but preserves inhomogeneities related to tem-

perature gradients. Compatible acoustic source terms for the LEE are determined analytically.
A simple rescaling of the dynamic simulation allows the acoustics of a relatively wide range
of subsonic �ows to be studied.

§On a Athlon processor, 900 MHz CPU clock, 256 Ko L2 cache.
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Numerical tests are performed on a temporal non-isothermal mixing layer �ow and com-
pared to compressible Direct Numerical Simulations. Results show very good agreement for
a Mach number of 0.2 and remain valid for relatively high subsonic Mach number, up to
M =0:4.
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